TensorFlow Developer Summit 2018 でのアナウンスまとめ

ということで、こちらをもとにした完全に自分用のメモ集みたいな感じです。まあ言ってみればただのリンク集なので、元ブログと情報量に大差はありませんのでご注意を。

medium.com

最初にやったほうがいいこと

$ pip install --upgrade tensorflow

とかやって、TensorFlowのバージョンを1.7まであげておきます。

Installing TensorFlow  |  TensorFlow

Eager Execution

Define-by-Run が実現されるやつですね

Eager Execution  |  TensorFlow

www.youtube.com

Running Estimator models on multiple GPUs on a single Machine

  • DistributionStrategyという簡単に分散処理が実現されるAPI
    • 既存コード(Estimator前提っぽい?)に対して最小限の変更で分散化させられますよ、というものっぽい
  • 最初は1台のマシン上の複数GPU前提、同期的なデータパラレルっぽいですね。ちゃんと読んでませんが
    • MirroredStrategyというAPIのみ対応していて、estimatorのRunConfigにぶっこむだけで変更完了、簡単でしょ!という雰囲気を感じました

github.com

TensorFlow Hub

たぶん今回の目玉の1つ。いたるところで説明されているので割愛

TensorFlow Hub  |  TensorFlow

medium.com

www.youtube.com

Graphical debugger plug-in

TensorFlow debugger(tfdbg)GUI的な位置付けで、かつTensorBoardのplug-inとなっているもの

github.com

www.youtube.com

TensorFlow Extended(TFX)のコンポーネント

TensorFlow Model Analysis

モデルの評価とかしてくれるやつ。後で試す。

github.com

こっちの Getting Started を読んだ方がイメージが湧きやすい github.com

TensorFlow Transform

前処理君。地味だけどこれからTFが本格活用されてくると重要になりそう?

github.com

Estimators

これはだいぶ前からいらっしゃる

Estimators  |  TensorFlow

TensorFlow Serving

これはだいぶ前からいらっしゃる。ガッツリ使ったことないので後で試す。

GitHub - tensorflow/serving: A flexible, high-performance serving system for machine learning models

TensorFlow.js

TensorFlow Hub と並んでもう一つの目玉っぽかったやつ

js.tensorflow.org

www.youtube.com

TensorFlow for Swift

Swiftも対応ということで、これもけっこうインパクト大きそう?

Swift Community  |  TensorFlow

www.youtube.com

TensorFlow Lite

今回で、Raspberry Piのサポートもアナウンスされたようです。

Introduction to TensorFlow Lite  |  TensorFlow

www.youtube.com

ハードウェア系

TensorFlow Probability API

Edwardのお話を聞いて高まったもののほとんどノータッチ。

GitHub - tensorflow/probability: Probabilistic reasoning and statistical analysis in TensorFlow

Community関連の話

TensorFlow blog

元記事になっているブログが今回新たに開設されたようです。

medium.com

TenosrFlow YouTube

YouTube上にTensorFlowチャンネルができました。今回のTensorFlow Dev Summit 2018のセッション動画も見られます。

www.youtube.com

Mailing Lists

プロジェクトごとにMailing Listが整備されたようです。

Mailing Lists  |  TensorFlow

まとめ

これは範囲が広すぎて追いかけるの無理ですね。見てきた人に話を聞くのが一番早そうです、が、以下のイベントはもう締め切ったあとかー間に合わない

tfug-tokyo.connpass.com

前職時代に執筆した「TensorFlow活用ガイド」 が発売されました

TensorFlow活用ガイド[機械学習アプリケーション開発入門]

TensorFlow活用ガイド[機械学習アプリケーション開発入門]

前職時に執筆に関わった書籍が無事出版の運びとなりました。TensorFlowについての書籍です。1/16発売ですので、もうポチっていただきます。TFUG(TensorFlow User Group)に参加している有志で執筆しようと企画が持ち上がりまして、自分は企画面+執筆者へのお声がけなどをさせていただきました。全員が仕事や趣味でガッツリとTensorFlowを使っている豪華執筆陣です。自分が一番TensorFlowそのものにはライトタッチな人間かもしれないな、と思うほど豪華な面々に参加いただきました。チラ裏ですが、最初はムック本想定で進んでいましたが、書籍化することになりました。

書籍の特徴:応用面を重視している

書籍の最大の特徴は、タイトルの通り応用を重視している点です。目次 を確認頂くと一目瞭然ですが、画像、自然言語処理、音声、と一通りの応用パターン + Androidアプリ連携までをカバーしています。

第1章 TensorFlowの概要(下田倫大)

第2章 TensorFlowの基礎(下田倫大)

第3章 画像処理(杉 義宏)

第4章 自然言語処理(太田満久)

第5章 音楽生成(久保隆宏)

第6章 Androidとの連携(有山圭二)

私の担当した1,2章はともかく、それぞれ重要なトピックかと思いますが、日本語の自然言語処理や、音声データ処理、アプリ連携の3つを日本語でカバーしている書籍は無いのではないかと思います。

この本でカバーしていないこと

全員エンジニアがバックグラウンドのメンバーのため、機械学習の理論的な部分を取り扱ったものではないです。あくまで、TensorFlowそのものに焦点を当てています。機械学習とは〜、といったことを期待して購入されないほうが良いです。手元にあるデータでどう遊んでやろうか、そういう考えをお持ちの方にとっての入り口としての書籍という位置づけです。

TensorFlowのバージョン問題

脱稿した段階ではTensorFlowはv1.2が出たくらいだったのですが、その後レビューなどの段階で時間が立つに連れ、最後はv1.4が出ており、いま現在はv1.5がもうすぐ出ようかというタイミングになってきました。対応可能なところは可能な限りバージョンを上げていますが、どうしてもバージョンが追随しきれていないところもあります。TensorFlow自体はv1.0以降、後方互換性を大きく壊すようなアップデートはそこまで入ってきていませんので、今回の書籍で最新のバージョンに追随しきれていない部分も、実際にTensorFlowを使っていく上では大きな問題にはならないと思っています。(が、そういう問題に遭遇した場合は教えてください)

という感じです

という感じですので、一つ何卒よろしくおねがいします!

参考

フグのロゴが可愛いTFUGはこちら となります。

tfug-tokyo.connpass.com

MLのアルゴリズム以外を取り扱った勉強会を開催した話

年末までにこのエントリを投下したい、と思いつつ、あれよあれよと年があけてしまいましたが、去る2017年12月に表題の通り、機械学習アルゴリズム「以外」を対象としたML Ops Study(仮)#1 という勉強会を開催してみました。

経緯など

ここ数年、機械学習やらディープラーニング、と言われる領域に親しいところに身を置いていて、自分の興味が機械学習や高度な分析の社会実装に興味があることが分かってきました。幸いにして、機械学習ブームによって、機械学習アルゴリズム部分に関する勉強会や書籍はたくさん世の中に出てくるようになり、結果、多くの人が機械学習アルゴリズムを勉強をするようになったように思います。一方で、問題を解決できそうなアルゴリズムがあったとしても、実際はそれを仕組みに落としていくところ、仕組みにした後に継続的に運用し続ける部分に関しての知見やノウハウはなかなかないのが現状です。これから機械学習がただのブームで終わらないためにも、社会実装を前提に置いた時に、機械学習アルゴリズム部分以外の知見を共有し合うような場が必要だと考えました。

この手の話、経験上、ラベルがないと人が集まらないな、と思っています。そんな中、とある人とお話する中で出てきた「ML Ops」というのがワーディングとしてハマりそうだな、ということで、このワードを使った勉強会を行ってみようと思い立ちました。実際は自分もML Opsというのが何を指すのか明確な定義があるわけではないのですが、Dev Opsというワードが既に世の中に出回っているので、なんとなくその派生系として勉強会が取り扱う内容を類推してもらえそうだと考えたわけです。

割とこのtweetの反応が良かったため、たまたまランチを食べたメルカリの知り合いにもこのアイデアを話してみたところ、スピーカーをしてくれるということで、最低限の状況は整えられそうだったので、年内に実行してみることにしました。

ml-ops.connpass.com

発表など

スピーカーの皆様におかれましては、雑に声をかけてしまったにも関わらず、非常に面白く、かつ(私含む)参加者の方にとってためになる発表をありがとうございました。協力いただいたスピーカーの皆様なしには開催できませんでした。

メルカリさんの発表

www.slideshare.net

メルカリさんのSpinnakerをうまく使った事例でした。めっちゃモダンな感じで話を聞いていて高まる事例でした。

ABEJAさんの発表

(資料は公開されていません)

マルチGPU環境でどのように深層学習のパラメータをどう設定するとどのような結果が得られるか、というサービス上必要になる課題を、論文を参照しつつ実践的に検証されているのが印象的な発表でした。

スマートニュースさんの発表

speakerdeck.com

大規模なサービスの裏側で動いている泥臭い部分も余すことなくお話いたただいたのが印象的な発表でした。

全体的に思った以上に濃い目の発表をしていただき、懇親会も含め非常に盛り上がったと思います。#mlops でそこそこtweetされていますので、気になった方は雰囲気はそちらで見てみてください。

twitter.com

とりあえず開催してわかったこと

ML Opsという名前で皆さんが期待している、課題に思っている内容は以下4つっぽい印象でした。

  1. そもそもシステムやサービスのどこにどのように機械学習を利用しているのかの話
  2. 機械学習のコードのテスト、モデルのデプロイ、モデルとデータの監視、自動化、などのいわゆるシステム運用の機械学習版っぽい話
  3. 機械学習のコード、あるいはシステム全体の高速化(GPUなどのハードウェア的な話や分散処理を含む)の話
  4. 機械学習システムの開発/運用体制の話

ということで、Dev Opsと呼ばれている話の機械学習版+活用パターンというのがニーズなのかな、とぼんやり考えています

2回目以降

自分も主催して面白く勉強になったのと、参加者の方からのフィードバックも比較的好評だったように思うので、2回目以降も機会があったら開催したいなと考えてます。スピーカーと会場提供してくれる方を絶賛募集しますので、気になった方は私に声をかけてみてください。お待ちしております〜

Machine Learning 15 minutesでお話してきました

TFUGにもよくご参加いただく門前さんにお呼ばれして言ってきました。

machine-learning15minutes.connpass.com

発表者の皆さんと運営の方でパシャリ。恒例っぽいです。TFUGでもやってもいいかもですね。

f:id:rindai87:20170624213740j:plain

以下FBのポストより転記(Publicっぽいので使わせてもらいました) www.facebook.com

今回は少し趣向を変えて最近気になっている機械学習っぽい案件の推進役不在問題についてLTしてきました。ここの人が増えないと自分の仕事が減らないという強い問題意識を抱えております!逆に言うとライバルが少なめな思いっきりブルーオーシャンなゾーンでもありますね。

speakerdeck.com

TFUGと違って規模が少し小さめなので、懇親会でもいろいろな方とお話できました。他のコミュニティに行くと色々と学びがあって良い体験をさせてもらいました。

Google Cloud Next in Tokyo関連であれやこれやした話

なんかめっちゃアクティブにGoogle Cloud Next in Tokyoに関わりました。いろいろありすぎたので備忘録がてら振り返ってみましょう。

6/13(Day0)

PartnerSummitまわりや、体験エリアでのデモの設営などでお祭り騒ぎでした。

PartnerSummit Japan'17内でのPartner Contestへの参加

ピッチさせていただいてWow部門でWinnerに選んでいただきました。Wow!

cloud-ja.googleblog.com

体験エリアでのデモ開発/設置/運営サポート

デモ1:Find Your Candy

Google Cloud Next(SF), Google I/O と好評をいただきましたFindYourCandyは東京でも展示されました!

直前にGoogle Cloud Platformブログの日本語版でも英語版でも露出させていただきました。レビュー+αしただけですが、共著者で並べていただけました。あざーす。

cloudplatform-jp.googleblog.com

cloud.google.com

デモ2:What’s Happening Now ?

キャンディに隠れて陰が薄かったかもしれませんが、もう1つデモを作っていたのです。 What’s Happening Now? はこいつだ!

ソラコムの安川さんもtweetしてくていましたが、イベント会場の情報をリアルタイムで可視化するデモを GCPとSORACOM を使って開発しました。Pepperとも連携し、単に画面で見せるだけでなく、Pepperによる会場の状況に応じたご案内も実現しました。このデモは複数の企業で実現させたものですが、私は全体の取りまとめ役っぽい役割をさせていただきました。設営する寸前まで会場の状況が分からないこともあり、どうなることかと思っていましたが、何とかなって良かったです。ほんとに。

で、こちらセッション中に出た構成図だと思うのですが(自分のセッションと重なっていたので出られず)、全体の構成を作り終えてみて、全てフルマネージドなサービスで出来ていることに気づきました。サーバレスってやつですね。グルーブノーツさんとのデータの受け渡しもBigQueryでの権限いただいたりとかそんな感じでできました。振り返るとけっこう面白い気がしてきたので、これはまたいずれ技術面にフォーカスして話をしなければ!です。

6/14(Day1)

セッションとコミュニティイベントでお祭り騒ぎでした。

セッション1

「速習:Google Cloud Platform上で実現する機械学習ビッグデータ解析」というセッションを行いました。

f:id:rindai87:20170616173203j:plain

セッション直前の状況でパシャリ。大入り満員で感謝です。機械学習の基本っぽい話からのDatalabでのハンズオン、みたいな感じでした。

セッション2

民主化が進む機械学習:すでに始まっている、Tensorflow を活用したビジネス活用事例のご紹介」というセッションの一部で登壇させていただきました。

Nextの直前にはキユーピーさんとの事例を出させていただいておりまして、そのご縁での登壇と相成りました。(たぶん)

f:id:rindai87:20170616173503j:plain

セッション直前の状況でパシャリ。こちらも大きな部屋でしたが大入り満員で立ち見もでていました。機械学習の集客力すごい。

TFUG紹介 @ Google Cloud Community Fes

Nextと同じ会場で行われたコミュニティ合同イベントです。

www.meetup.com

こんな感じの雰囲気で順番が回ってきて

f:id:rindai87:20170616173902j:plain

TFUGのターン!

TFUG トラックでの発表 @ Google Cloud Community Fes

その後、各部屋に分かれての個別のコミュニティトラックに移ります。TFUGトラックの運営 兼 司会 兼 発表者ということであれこれしました。詳細はすでにエントリとしてしたためていますので、ご興味があれば以下のリンクから。

rindai87.hatenablog.jp

6/15(Day2)

セッション3

いろいろあってDay2と同じ内容のセッションを再演しました。

f:id:rindai87:20170616174346j:plain

またまたセッション直前にパシャリ。このセッションも大入り満員ということであざーす、でした。

おまけ

TFUGが基調講演でフィーチャーされた!

基調講演でサムラムジさんにTFUGを言及頂きました!あざーす!

その流れでこれまた基調講演に登壇されていたマイルズさんから、TFUGのロゴのステッカーが欲しい!というアツいご意見が。すごい。

日経新聞にもやったことが出た!

6/16の日経新聞の朝刊にはGoogle Cloud Nextの特集が記事広告として入っていて、その中で自分が関わったものが入っていました!すごい。

www.facebook.com

以下のものが記事内に出ていました。紙面で自分がやったことを見る日が来るなんて。 - キユーピーさんの事例 - FIndYourCandy(説明つき) - What’s Happening Now ? (写真のみ)

とりあえず盛りだくさんでした。これで一段落です。たぶん。

Google Cloud Community FesでTFUGトラックを開催しました

www.meetup.com

Google Cloud NEXTの会場で、Google Cloud系のコミュニティ合同でイベントやりましょう、というもので、TFUGも呼んでいただきトラックを1つ割り当てていただきました。

www.facebook.com

こんな感じでわいわいした中でTFUGを紹介させてもらいました。ワイワイして良い雰囲気でした。

tfug-tokyo.connpass.com

LT大会も盛況だったし、その後のパネルディスカッション形式のセッションも個人的には非常に楽しかったです。なんだかんだと良いイベントにできたのではないかな、と思っております。

私も最近露出を多くしていただいているCandyのデモがNext Tokyoでも展示されているので、皆さんに興味を持っていただこうと、デモの中で使ってる技術の1つであるCandyのデモの話をさせていただきました。

www.facebook.com

speakerdeck.com

最近、習慣にしている話す内容を一度文章化しておくためにqiitaにもあげています。説明っぽいものが欲しい方は合わせてどうぞ。

qiita.com

転移学習は、案件という観点では落とし所になることが多いかと思っていて、これから使われていくんじゃないかなぁと思っています。

Google I/O 報告会でスピーカーをさせてもらいました

タイトルの通り、GDG主催のI/O報告会のMLパートを担当させていただきました。

developers-jp.googleblog.com

eventdots.jp

全国を中継で結ぶというイベントで、東京から発信するだけでなく、地方での発表を東京側で見るなんていう双方向な感じで、新鮮な感じでした。

すごくいい感じでパシャリしていただきました。

資料はSpeakerDeckで公開済みになります。 speakerdeck.com

このイベントへの布石としてブログにまとめていたかいがありました。

rindai87.hatenablog.jp

TF Lite、TPUと面白い発表があったので、これからが楽しみですね。僕もAndroidの開発をちゃんとやりたくなってきています。Nextが終わったら。。。